Skip to article frontmatterSkip to article content
ey2dy=π.\infint e^{-y^2}dy = \sqrt{\pi}.
eby2dy=πb\begin{align*} \infint e^{-b y^2}dy &= \sqrt{\frac{\pi}{b}} \end{align*}

where b>0b > 0 is a real and positive constant.

yeby2dy=0,\vph\infint y e^{-b y^2}dy = 0,

where b>0b>0 is a real and positive constant.

y2eby2dy=12πb3,\vph \infint y^2 e^{-b y^2}dy = \frac{1}{2}\sqrt{\frac{\pi}{b^3}},

where b>0b>0 is a real and positive constant.

eαy2+βydy=παeβ2/4α\infint e^{-\alpha y^2 + \beta y}dy = \sqrt{\frac{\pi}{\alpha}}e^{\beta^2/4\alpha}

where α and β are complex numbers, and the real part of α is positive, Re(α)>0\mathrm{Re}(\alpha) > 0.